
Research on Real-time Virtualization Technology for Control
System

Xiangying Kong
Department of Electronic Equipment, Jiangsu Institute of

Automation, Lianyungang, China
iamkxy@aliyun.com

Xinran Kong
School of Mathematics and Statistics, Xi’an Jiaotong

University, Xi ’an, China
kongxr_xj@aliyun.com

ABSTRACT
In recent years, the combination of multi-core processor and virtual-
ization technology promotes the rapid application of virtualization
technology in the field of real-time control. While virtualization
technology gives full play to the performance of multi-core pro-
cessors and improves the robustness and flexibility of application
systems, the real-time performance loss caused by application vir-
tualization has always been concerned by people. On the basis of
discussing the concept of real-time control system, the principle
of virtualization technology and the existing approaches of real-
time virtualization technology, the real-time connotation of the
virtualized control system is defined. This paper analyzes the real-
time and applicable scenarios of two application schemes, namely,
large-scale virtualization based on private cloud and single-node
virtualization based on HyperVisor, the related real-time virtualiza-
tion technology and application scenarios are discussed, and builds
a test environment, and measures the interrupt response time and
event response time of the corresponding schemes. The former can
only meet the application with millisecond real-time performance,
while the latter still has sub-microsecond real-time performance,
which can meet most real-time system requirements.

CCS CONCEPTS
• Computer systems organization; • Real-time systems; •
Real-time operating systems;

KEYWORDS
Control system, Virtualization, Real-time, Interrupt response time,
Network delay

ACM Reference Format:
Xiangying Kong and Xinran Kong. 2021. Research on Real-time Virtu-
alization Technology for Control System. In The 5th International Con-
ference on Computer Science and Application Engineering (CSAE 2021),
October 19–21, 2021, Sanya, China. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3487075.3487080

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSAE 2021, October 19–21, 2021, Sanya, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8985-3/21/10. . . $15.00
https://doi.org/10.1145/3487075.3487080

1 INTRODUCTION
As a new computing mode, virtualization technology has good
openness and flexibility, which is beneficial to improve equipment
utilization and reduce enterprise costs[1,2]. In recent years, virtual-
ization technology has rapidly expanded to many computing fields
and is accelerating. Some real-time fields, such as mobile commu-
nication [3–5], online games [6, 7], industrial control [3, 8, 9], and
even weapons and equipment [10, 11] have begun to try to adopt
virtualization technology.
Real-time is an important indicator concerned by the control field,
In view of the real-time problem of virtualization technology, some
enterprises and scholars have carried out research on the improve-
ment and promotion of virtualization real-time from different angles
[12–16], and given some solutions, However, most of the existing
researches are oriented to soft real-time applications, and some
researches are not accurate in paying attention to real-time. Kai
Chen et al. analyzed and evaluated how KVM affects the interrupt
response time of VxWorks as a guest operating system[17], and
Hyoseung Kim et al. optimized the real-time process of virtual in-
terrupt processing[18], but the real-time nature of these discussions
is defined as the response time of virtual machines to internal inter-
rupts, which is not applicable to industrial real-time control systems.
Starting from the real-time nature of control field, this paper ana-
lyzes and tests the real-time nature of two existing virtualization
application schemes, and gives relevant suggestions.

2 PRINCIPLE OF VIRTUALIZATION
TECHNOLOGY

The virtualization technology is divided into two types: Type1 Para
Virtualization and Type2 Full Virtualization [19]. See figure 1a and
figure 1b respectively.
Para-virtualization runs directly on the physical hardware platform,
It virtualizes key hardware devices, provides several independent
partitions, and provides basic services of inter-partition control and
communication. Because the virtual environment of the Hypervisor
is close to the hardware and can directly use the hardware resources,
the performance of the para virtualized VM is basically equal to
the hardware performance, which is more suitable for real-time
systems. Type1 implementation mainly includes Xen, VMWare ESX,
WindRiver HyperVisor, XtratuM and so on.
Full virtualization runs on the host operating system (Host OS) of
the physical hardware platform. Because it runs in the traditional
operating system environment, the fully virtualized HyperVisor is
usually a specific software on top of the host operating system. Run
related hardware, such as network adapters and other peripheral
devices, through full simulation, Full virtualization allows running

https://doi.org/10.1145/3487075.3487080
https://doi.org/10.1145/3487075.3487080

CSAE 2021, October 19–21, 2021, Sanya, China Xiangying Kong and Xinran Kong

Figure 1: Type 1 and Type 2 Hypervisors.

unmodified Guest OS. In this way, it is easy to run multiple operat-
ing systems or even heterogeneous operating systems on the same
hardware. Full virtualization needs to intercept special privileged
instructions (such as accessing peripheral registers) executed by
the kernel of guest operating system, which leads to the hypervisor
falling into traps constantly, which brings great performance cost.
Type2 mainly includes KVM, VMware workstation, VirtualBox,
Oracle virtual machine server, etc.
Para virtualized Hypervisor such as Xen run on bare metal, which
reduces the overhead of full system virtualization and is more
suitable for real-time cloud computing, However, due to the fact
that full virtualization does not require any changes to the guest
operating system, the full virtualization technology represented by
KVM has developed faster in recent years.
The full name of KVM is Kernel-based Virtual Machine, which is
a virtual machine management module added to Linux kernel, It
reuses the functions of process scheduling, memory management,
IO management and so on in the kernel, and serves as a Hyper-
visor that can support virtual machine running [19]. Actually, a
KVM virtual machine VM is just a process in Host Linux, which is
dispatched by Host OS together with other processes.

3 TWO VIRTUALIZATION REAL-TIME
APPLICATION SCHEMES

At present, there are mainly two kinds of virtualization applications.
Scheme 1, as shown in figure 2, is for single-node real-time applica-
tions, making full use of the powerful processing capability of multi-
core processing, and integrating real-time control applications and
non-real-time applications into the same computer by adopting para
virtualization technology (a few of which also adopt full virtual-
ization technology). Compared with the traditional control system,
this mode is to replace the traditional low-performance processor
with a multi-core processor with powerful computing power, and

Figure 2: Schematic Diagram of System Solution for Single-
Node Real-Time Application.

Figure 3: Schematic Diagram of System Solutions for Large-
Scale Computing and Control Applications.

replace the real-time operating system with a hypervisor-based
real-time operating system and a non-real-time operating system.
Scheme 2 is for large-scale computing and control systems, which
uses the idea of cloud computing for reference, separates computing
and control, concentrates computing in a virtualized environment,
uses adapters to connect with the physical world, and uses network
connections between adapters and computing centers, usually using
full virtualization technology. See figure 3

4 REAL-TIME ANALYSIS
4.1 Real-Time Performance of Control System
Real-time is deterministic, that is, the system can respond to exter-
nal events and execute certain actions within a certain time.
Certainty is a measure of the change of system response time to
specific events, and jitter is an index of real-time performance, As
shown in Figure 4, it is the worst-case execution timeminus the best-
case execution time. Different applications have different periods
and require different response times, with periods ranging from
tens of microseconds to hundreds of milliseconds and acceptable
jitter ranging from several microseconds to several milliseconds.

Research on Real-time Virtualization Technology for Control System CSAE 2021, October 19–21, 2021, Sanya, China

Figure 4: Event Response Time Composition.

Generally speaking, for software, the real-time performance of the
system depends on Interrupt Response Time (IRT) and Context
Switch Time, CST), and the calculation methods are as follows (1)
and (2) respectively. These two indexes are also important goals of
real-time operating system design. When interrupt nesting and task
preemption are not considered, these two times are certain, which
are mainly related to the instruction set that needs to be executed
when corresponding operations occur. Generally, the interrupt re-
sponse time of the real-time operating system is between several
and ten microseconds, and the jitter is about 1-2 microseconds,
which is related to the implementation mode and CPU frequency.
TimeIRT=t2-t1 (1)
TimeCST=t3-t2 (2)

The response to external events in a virtualized environment is
more complex. Note that we are concerned about external events,
while the existing researches on the real-time performance of virtual
machines mostly focus on the real-time performance of internal
interrupts (such as clock interrupts) of virtual machines, We believe
that industrial control systems are Cyber-Physical Systems (CPS),
and we should pay more attention to the response to the physical
world.

4.2 Real-Time Analysis of Scheme 1
In Scheme 1, the system is equipped with special boards with acqui-
sition function and control function, and the computer system
senses external events or states through the acquisition board,
makes calculations and judgments, and then responds through
the control board. Compared with non-virtualized environment, in
virtualized environment, interrupt delay is composed of hardware
circuit for receiving interrupt signal, operating system for schedul-
ing interrupt and interrupt service routine for processing interrupt
request, When Guest OS for processing interrupt needs to be awak-
ened, the context switching time that hypervisor must execute is
also a considerable delay source, How to avoid or minimize this
time is also an important goal of real-time optimization design of
virtualized system.
Especially when adopting full virtualization technology, the virtual
machine is a process of the Host OS, When the interruption occurs,
the corresponding virtual machine may need to be scheduled, and
the Host OS cannot see the internal process information of the
virtual machine, so the response process may be interrupted by
other processes in the Host OS (including other virtual machines),
Therefore, even if the priority of even hander process is the highest
in the virtual machine, the whole response process is uncertain.
To prevent virtual machines that need to handle interrupts from
being preempted by other processes, core affinity technology pro-
vided by hardware and device passed through technology can be
adopted.

Figure 5: Equipment Passed through Mode.

As shown in Figure 5, passed through can not only make the vir-
tual machine monopolize the hardware, but also improve the effi-
ciency of the virtual machine using the hardware. This is because
input/output simulation is the biggest performance challenge in
virtual machines, Up to now, in all virtualization technologies, vir-
tual machine monitor (VMM) must participate in all interactions
between guest software and input/output peripherals. In hardware-
assisted virtualization, this leads to a large number of expensive
virtual machines exiting. This is because in the passed through
mode, when the Guest OS interacts with peripheral devices, VMM
software is not required to participate, thus avoiding a large number
of virtual machine exit/entry operations.
The Linux kernel supports task affinity and interrupt affinity. For
task affinity, you can call the system call sched_setaffinity () or use
tools such as taskset/cpuset from the shell to set the CPU binding
of the process. For interrupt affinity, Linux provides a user interface
through /proc/IRQ/< IRQ _ number >/SMP_affinity file, which is
used to set the CPU affinity of interrupts [20].

4.3 Real-Time Analysis of Scheme 2
Scheme 2 is actually a control system adopting cloud computing
mode, The original control system must separate calculation from
control, and an Adapter Process (AP) needs to be introduced to real-
ize the connection between the physical world and cloud computing
devices, as shown in Figure 3 . Cloud computing focuses on com-
puting, communicating with adapters through the network, and
realizing the collection and control of physical world information.
Therefore, the real-time performance of the system is transformed
into the certainty of the network message exchanged with the
adapter, that is, the calculation result must be sent to the adapter at
a certain time, so that the AP can complete the response to the phys-
ical world within the required time. Due to the limited number of
physical network cards, the passed through mode of network cards
is not realistic in practical application, Virtual machines usually
communicate with the outside by means of a tap/tun device, and
the response flow based on TAP/TUN device is shown in Figure 6
[21]. It can be seen that this will involve switching between kernel
mode and user mode many times, and the intermediate process is
easily interrupted by other processes.
The real-time performance of this kind of system depends on the
following factors: 1) the time from the physical network card re-
ceiving the message to entering the interrupt handler of the Host

CSAE 2021, October 19–21, 2021, Sanya, China Xiangying Kong and Xinran Kong

Figure 6: Schematic Diagram of Data Exchange between Vir-
tual Machine and External Network Based on Tap/Tun.

OS network card driver depends on the interrupt response time of
the Host OS; 2) The time when the 2)Host OS copies the message
to the Tap device; 3) The time for 3)Qemu to read messages from
Tap equipment involves the switching between kernel mode and
user mode and the exit and entry time of a large number of KVM; 4)
The time when the message inside the virtual machine is submitted
to EHP involves the switch from kernel mode to user mode; 5)
After processing, return the corresponding message according to
the original route.
Scheduling execution of time handlers depends not only on the real-
time performance of the hosted Guest OS, but also on the real-time
performance of the hosted Host OS. See figure 2In virtual environ-
ment, the scheduling timing of application A depends on two-level
scheduling, First, the Host OS schedules the Guest OS hosted by
application A, and then the Guest OS schedules application A, so
that application A can get the opportunity to execute. Because the
Host OS doesn’t know the priority of the applications in the Guest
OS, once the virtual machine where the Guest OS is located is sus-
pended due to resource competition, all its internal programs will
not get the opportunity to execute. It should be pointed out that
the Host OS takes on a lot of management work, and also needs to
take up a lot of CPU time and manage multiple interrupt resources,
which brings great uncertainty to the execution of virtual machines.

4.4 Real-Time Improvement Measures of
Virtualization System

In order to improve the real-time performance of the virtualized
system, the following measures can be taken:
1) both 1)Host OS and Guest OS adopt real-time operating systems
to reduce the uncertainty of the operating systems themselves; Host
OS usually uses Linux, In the standard Linux kernel, RT-Patch can
solve the real-time problem of Linux kernel [22, 23].
2) By adopting the affinity technology provided by hardware, the
virtual machine performing critical tasks is bound with the core
and monopolizes the core, so as to avoid being preempted and
interrupted by other processes (including other virtual machines).
3) The network card is bound to the virtual machine by passed
through to improve the network communication performance of
the corresponding virtual machine.

Table 1: Test Result of Interrupt Response Time of Real-
Time Operating System under Physical Computer (Unit Mi-
crosecond)

OS Minmum Maximum Average
VxWorks 6.8 4.17 4.42 4.24
JARI-Works 3.2 4.38 5.27 4.53

4) Set the task priority of all virtual machines to the highest to
reduce the preemption of other processes (non-virtual machines).
These technologies can improve the certainty of interrupt, task
scheduling and communication in the designated virtual machine,
However, due to the limitation of the number of physical host
processor cores and network cards, these measures can only ensure
the real-time performance of a limited number of applications, and
too many bindings also reduce the flexibility of the system, thus
losing the original intention of adopting virtualization technology.

5 PERFORMANCE TEST
In order to test the interrupt response time, we made a clock board
with a built-in counter, The interrupt period of the clock board can
be set from 1-1000 milliseconds, and an interrupt is generated at the
beginning of each period, At the same time, the internal counter is
reset to count from 0, the counting unit is 10 nanoseconds, and the
count can be read by a 32-bit register.

5.1 Real-Time Test of Physical Computer
The test environment uses Intel Core ™ i7 processor, the operat-
ing system uses VxWorks6.8 and JARI-Works3.2 respectively, the
interrupt is generated by the clock board, the interrupt period is
set to 10ms, the interrupt handler reads the counter value of the
clock board, and tests for 10,000 times, The test results are shown
in Table 1

5.2 Performance Test of Scheme 1
We built test environments for semi-virtualization and full virtual-
ization. Hardware adopts Intel Core i7 processor+clock board.
Wind River Hypervisor is adopted for semi-virtualization, and Vx-
Works 6.8 is adopted for Guest OS.
The fully virtualized Host OS adopts Linux+KVM+RT Patch, and the
Guest OS adopts VxWorks 6.8 and JARI-Works 3.2 . The test virtual
machine adopts kernel affinity setting, and the clock board adopts
passed through mode and is directly managed by the operating
system of the tested virtual machine. Interrupt response time of the
tested Guest OS interrupt handler, the tested Guest OS clock board
interrupt handler reads the clock board counter value and tests it
for 10,000 times, The test results are shown in Table 2It can be seen
that compared with the traditional physical machine, the interrupt
response time of the system is increased by 4-16 microseconds, and
the jitter time is increased by 2-3 microseconds, which can still
meet the requirements of most strong real-time applications.

Research on Real-time Virtualization Technology for Control System CSAE 2021, October 19–21, 2021, Sanya, China

Table 2: Test Result of Interrupt Response Time of Real-Time Operating System of Virtual Platform (in Microseconds)

Host OS Guest OS Minmum Maximum Average
Wind River Hypervisor VxWorks 6.8 8.36 10.22 8.85
Linux+KVM+RT Patch VxWorks 6.8 18.67 20.74 19.31

JARI-Works 3.2 18.32 21.85 19.76

Table 3: Test Result of Virtual Platform Adapter Event Re-
sponse Time (in Microseconds)

Host OS Guest OS average maximum
CentoOS+KVM
+RT Patch

Linux 156 5632
JARI-Works 3.2 151 4671

5.3 Performance Test of Scheme 2
Server adopts eight Inspur Yingxin NF 5280 M 4 (CPU Intel Xeon
E5-2630), host OS is CentOS+KVM+RT Patch, Guest OS is VxWorks
6.8, JARI-Works 3.2, Linux; The adapter adopts a PC (Intel Core i7
processor+clock board, the operating system is VxWorks 6.8, and
the clock board. 10 gigabit Ethernet card Intel I350, gigabit Ethernet
card Intel 82599ES.
Test method: the test virtual machine adopts the nuclear affinity
setting; The interrupt period of the adapter clock board is set to
10ms,Every time an interrupt is generated, the adapter sends a frame
message with increasing sequence number to the Guest OS in the
server, totaling 100,000 frames, and records the time of sending the
sequence number message in the array T1[] (subscript is equal to
the frame number); After receiving the message, the Guest OS in the
server immediately replies the corresponding message (including
serial number) to the adapter; After receiving the reply message, the
adapter records the receiving time in the array T2[] (the subscript
is equal to the frame number). The test results are shown in Table 3
It can be seen that compared with the traditional physical machine,
the time response time of the system is increased by 140-150 mi-
croseconds, and the jitter time is increased to 4-5 milliseconds,
which can only meet the requirements of applications with mil-
lisecond jitter time, and is not suitable for most strong real-time
systems.

6 CONCLUSION
In view of the real-time problem of virtual technology, we analyzed
the virtual technology principle and application response require-
ments, discussed the relevant real-time optimization measures, and
tested the common solution building environment. Test results
show that scheme 1 can meet most control system requirements,
while scheme 2 can only meet the application requirements with
millisecond jitter time. It should be pointed out that the above tests
have not considered the system load.

ACKNOWLEDGMENTS
This research work was funded by National Key R&D Program of
China 2018YFB1305900.

REFERENCES
[1] W. Huang, J. Liu, B. Abali, D. Panda (2006). A case for high performance com-

puting with virtual machines, in: Proc.of 20th Annual ACM Int’l Conference on
Supercomputing, pp. 125-134.

[2] M. Mergen, V. Uhlig, O. Krieger, J. Xenidis (2006). Virtualization for high-
performance computing, in: Proc.of ACM SIGOPS Operating Systems Review,
vol. 40 (2), pp. 8-11.

[3] Xia Hao, Liu Qin (2014). Avenue to Jane – Cloud NF, ZTE’s mobile network
virtualization solution, No.1, 18-19.

[4] Multi-Core with virtualization, a solution for future smart phones. http://www.
alphagalileo.org , Aug 2010 .

[5] S. Yoo, Y. Liu, C. Hong, C. Yoo and Y. G. Zhang (2008). MobiVMM: a Virtual
Machine Monitor for Mobile Phones, Proc. of the 1st Workshop on Virtualization
in Mobile Computing, Breckenridge, USA, pp.1-5.

[6] https://www.intel.cn/content/www/cn/zh/virtualization/virtualization-
technology/intel-virtualization-technology.html 2021.4.30.

[7] https://cloud.tencent.com/developer/information/all.html 2021.4.30.
[8] The virtualization technology of industrial controller-edge computing entered

the factory workshop, http://www.eepw.com.cn/article/202008/416580.htm, April
30, 2021.

[9] WindRiver, virtualization requirements of next generation industrial control sys-
tem, http://windriver.com.cn/downloads/files/WP-requirements-virtualization-
next-gen-industrial-cs-white-paper-cn.pdf 2021.4.30 .

[10] Zhang Junhong, Tong Qiang (2019). A New Generation of Airborne Software De-
sign Based on Software Virtualization Technology, Journal of Nanjing Aerospace
University, Vol.51, No.6, 772-777.

[11] Xiong Huagang (2014). Jake, Architecture and Key Technologies of Avionics
Cloud, International Aviation, No.7, 59-60, 2 pages in total.

[12] R. Kaiser (2008). Alternatives for Scheduling Virtual Machines in Real-Time
Embedded Systems, Proc. of the 1st Workshop on Isolation and Integration in
Embedded Systems, Glasgow, Scotland, UK, pp.5-10.

[13] Rik van Riel (2015). Real-time KVM from the ground up, KVM Forum 2015, Red
Hat.

[14] J. Kiszka (2009). Towards Linux as a Real-Time Hypervisor, Proc. of the 11th
Real-Time Linux Workshop, Dresden, Germany, pp.205-215.

[15] W. Jiang, Y.S, Zhou, Y. Cui, W. Feng, Y. Chen, Y.C, Shi and Q.B, Wu (2009). CFS
Optimizations to KVM Threads on Multi-Core Environment, Proc. Of the 15th
International Conf. on Parallel and Distributed Systems, Shenzhen, China, pp.348-
354.

[16] M. Rosenblum and T. Gar¯nkel (2005). Virtual Machine Monitors: Current Tech-
nology and Future Trends, Computer, vol.38, pp.39-47.

[17] Ruhui Ma, Fanfu Zhou, Haibing Guan (2013). Performance Tuning Towards a
KVM-based Embedded Real-Time Virtualization System. J. Inf. Sci. Eng., vol .29,
1021-1035.

[18] Hyoseung Kim, Shige Wang, R. Rajkumar (2015). Responsive and Enforced Inter-
rupt Handling for Real-Time System Virtualization. 2015 IEEE 21st International
Conference on Embedded and Real-Time Computing Systems and Applications,
90-99.

[19] S. Brosky and S. Rotolo (2003). Shielded processors: Guaranteeing sub-millisecond
response in standard Linux, In Workshop on Parallel and Distributed RealTime
Systems, WPDRTS’03, Nice,France.

[20] Guang Xiaoming, Hujie, Chen Long, Guo Jing (2012). Principle and Implementa-
tion of Virtualization Technology, Electronic Industry Press.

[21] The relationship between virtual machine network card and tap device on linux
bridge, https://blog.csdn.net/xiakewudi/article/details/76851076 April 30, 2021.

[22] RealTime Linux Wiki, 2009.http://rt.wiki.kernel.org.
[23] Steven Rostedt, Darren V. Hart (2007). Internals of the RT Patch. 2007 Linux

Symposium, Volume 2. 161-172. Canada.

http://www.alphagalileo.org
http://www.alphagalileo.org
https://www.intel.cn/content/www/cn/zh/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.cn/content/www/cn/zh/virtualization/virtualization-technology/intel-virtualization-technology.html
https://cloud.tencent.com/developer/information/all.html
http://www.eepw.com.cn/article/202008/416580.htm
http://windriver.com.cn/downloads/files/WP-requirements-virtualization-next-gen-industrial-cs-white-paper-cn.pdf
http://windriver.com.cn/downloads/files/WP-requirements-virtualization-next-gen-industrial-cs-white-paper-cn.pdf
https://blog.csdn.net/xiakewudi/article/details/76851076
http://rt.wiki.kernel.org

	Abstract
	1 INTRODUCTION
	2 PRINCIPLE OF VIRTUALIZATION TECHNOLOGY
	3 TWO VIRTUALIZATION REAL-TIME APPLICATION SCHEMES
	4 REAL-TIME ANALYSIS
	4.1 Real-Time Performance of Control System
	4.2 Real-Time Analysis of Scheme 1
	4.3 Real-Time Analysis of Scheme 2
	4.4 Real-Time Improvement Measures of Virtualization System

	5 PERFORMANCE TEST
	5.1 Real-Time Test of Physical Computer
	5.2 Performance Test of Scheme 1
	5.3 Performance Test of Scheme 2

	6 CONCLUSION
	Acknowledgments
	References

